The generator matrix

 1  0  0  1  1  1  0 X^2  1  1 X^2  1 X^2+X  1  1  X X^2+X  1  1  1 X^2+X  1  X  X  1  1 X^2  1  1  1  1  1  1  1 X^2 X^2  1  1  X X^2+X  1  X  1 X^2+X  1  1  1  1  1 X^2  1
 0  1  0  0 X^2+1 X^2+1  1  X X^2  1  1 X^2+X  1 X+1  X  1 X^2 X^2+X+1 X^2+X  1  1  X  1  X X^2  1  1 X^2+1 X^2+X  X X^2 X^2 X+1 X+1  1  1 X^2+X+1 X+1  1  1 X+1  1  1  1 X^2+X+1 X^2+X+1 X^2+1  0 X^2+1  X  X
 0  0  1 X+1 X^2+X+1 X^2 X^2+X+1  1  X X^2+1  1  1  0 X^2  0  1  1  X  1 X^2+1  0  X X+1  1 X+1 X^2+X+1 X^2  X X+1 X^2+X+1  1 X^2+1 X+1 X^2+X+1  X X^2+X  1 X^2+1  X  X  0  1 X^2+X X^2+1 X^2  X X^2 X+1  X X^2+X X^2+1
 0  0  0 X^2 X^2  0 X^2 X^2 X^2  0  0  0 X^2  0  0 X^2 X^2  0 X^2 X^2  0 X^2  0  0  0  0 X^2  0  0 X^2  0 X^2  0 X^2 X^2  0 X^2  0  0 X^2 X^2  0 X^2  0 X^2 X^2 X^2  0 X^2  0  0

generates a code of length 51 over Z2[X]/(X^3) who�s minimum homogenous weight is 48.

Homogenous weight enumerator: w(x)=1x^0+352x^48+256x^50+184x^52+80x^54+88x^56+48x^58+8x^60+7x^64

The gray image is a linear code over GF(2) with n=204, k=10 and d=96.
This code was found by Heurico 1.16 in 0.192 seconds.